Math Logic: Model Theory \& Computability
Lecture 27

Recall that we call a relation $R \subseteq \mathbb{N}^{k}$ conpurtcble if $\mathbb{1}_{R}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is coapatable. We can also prove the converse (in some sase):

Graph property. A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is computable iff its graph $G_{F}:=\left\{(\vec{a}, b) \in \mathbb{N}^{k+1}\right.$: $f(\vec{a})=b\}$ is wapetable.
Proof. \Rightarrow : Suppose $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is warpatable. Then bor each $(\vec{a}, b) \in \mathbb{N}^{k-1}$, $(\vec{a}, b) \in G_{f}$ iff $f(\vec{a})=b$ if $f\left(P_{1}^{k+1}(\vec{a}, b), \ldots, P_{k}^{k+1}(\vec{a}, b)\right)=P_{k+1}^{k+1}(\vec{a}, b)$ so h_{s} is computable $\sin c=$ is.
\Leftrightarrow Suppose G_{f} is computable. Then $f(\vec{x}):=\mu_{y}\left(G_{f}(\vec{x}, y)\right)$ is congatable.
We will show later that conpatuble relations are not closed under sanatitiers \exists, \forall. However:

Bounded quantification: The dan of computable relations is closed under bounded saartification, ie. fer each cougutable relation $R \subseteq \mathbb{N}^{k} \times \mathbb{N}$, the relations $R_{1}, R_{2} \leq \mathbb{N}^{k} \times \mathbb{N}$ destined by

$$
\begin{aligned}
& R_{1}(\vec{x}, n): \Leftrightarrow \exists y \leq n R(\vec{x}, y) \\
& R_{2}(\vec{x}, n): \Leftrightarrow \forall y \leq n R(\vec{x}, y)
\end{aligned}
$$

ane computable.
Proof. Since conputatable tachious are closed uncles negation, it is enough to prove nt R, is computable. For each $(\vec{a}, n) \in \mathbb{N}^{k+1}$,

$$
R_{1}(\vec{a}, n) \Leftrightarrow j_{x}(R(\vec{a}, x) \vee x>n) \leq n .
$$

Prop. The following functions an comparable:
(a) Sate subtraction $-: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $(x, y) \mapsto \max \{0, x-y\}$.
(b) Division : $\mathbb{N}^{2} \rightarrow \mathbb{N}$ defied $b /(x, y) \mapsto\left\{\begin{array}{cl}\left\lfloor\frac{x}{y}\right\rfloor & \text { if } y \neq 0 \\ 0 & \text { otherwise }\end{array}\right.$
(c) Remacingler Rena: $\mathbb{N}^{2} \rightarrow \mathbb{N}$ dined bs $(x, y) \mapsto \begin{cases}x-y \cdot\left[\frac{x}{y}\right] & \text { if } y \neq 0 . \\ x & \text { if } y=0\end{cases}$
(d) Pair: $\mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by

$$
(x, y) \mapsto \underbrace{\frac{(x-y)(x+y+1)}{2}}_{\begin{array}{c}
\text { \# of pairs on } \\
\text { the diagonals before } \\
\text { the }(x+y)^{u} \text { the diagonal }
\end{array}}+\underbrace{x}_{\text {the }}
$$

(e) Left: $\mathbb{N} \rightarrow \mathbb{N}$ defined by $z \mapsto$ the unique x such that then is y such the

$$
\operatorname{Pair}(x, y)=z \text {. }
$$

Right: $\mathbb{N} \rightarrow \mathbb{N}$ defied $1, z$ the unique y such that then is x such the

$$
\operatorname{Pair}(x, y)=z \text {. }
$$

Proof. (a)-k) is homework, (d) is dear, so we prove (e). Note Mot

$$
\begin{aligned}
& \operatorname{Left}(z)=\mu_{x}(\exists y \leq z \operatorname{Pair}(x, y)=z) \\
& \operatorname{Right}(z)=\mu_{y}(\exists x \leq z \operatorname{Pair}(x, y)=z) .
\end{aligned}
$$

Dedekind's analysis of recursion. Suppose $F: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is defied l_{j} primitive recursion tom $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h \cdot \mathbb{N}^{k+2} \rightarrow \mathbb{N}$, i.e. For all $(\vec{a}, n) \in \mathbb{N}^{k+1}$,

$$
\left\{\begin{array}{l}
f(\vec{a}, 0)=g(\vec{a}) \\
f(\vec{a}, n+1)=h(\vec{a}, n, f(\vec{a}, n))
\end{array}\right.
$$

Then for each $(\vec{a}, n) \in \mathbb{N}^{k+1}$ and $m \in \mathbb{N}$,

$$
f(\vec{a}, n)=m \text { iff } \exists \vec{c} \in \mathbb{N}^{<N} \quad \ln (\vec{c})=n+1 \text { and } c_{0}=g(\vec{a})
$$

and $c_{n}=m$ and $\forall i<n \quad c_{i+1}=h\left(\vec{a}, i, c_{i}\right)$.
Proof. Follows by induction on i tut $c_{i}=f(\vec{a}, i)$.
We will we Dedekind analysis to implement primitive secession vie successful such,

Int for his we weed to computable encode/decode tuples of natural numbers of crbitercy length. This is done h, Gödel using:

Chinese Remainder Theorem. It $d_{1}, d_{1}, \ldots, d_{u} \in \mathbb{N}$ ane pairwise coprime numbers >1, then, patting $d:=d_{1} \cdot d_{2} \ldots \cdot d_{n}$, the function $h: \mathbb{Z} / d \mathbb{Z} \rightarrow \mathbb{Z} / d_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / d_{n} \mathbb{Z}$ is a well-deficed group-isomorplism. $\quad[a]_{d} \mapsto\left([a]_{d_{1}},[a]_{d_{2}}, \ldots,[a]_{d_{n}}\right)$

Proof. Well-defineduen follows frow the tact the if $a \equiv b$ then $a \equiv \equiv_{i} b$ tor all :. That h is a gronp-homomorphism is because modding out respects audision. Beast both groups $\mathbb{Z} / \mathbb{\mathbb { Z }}$ and $\mathbb{T} / d_{1} \mathbb{Z} \times \ldots \mathbb{Z} / d_{n}$ have d eleneats, it is enough to show (b) the Pigeonhole Princigh) Kat h is infective, for which ae weed L o check ht if $h\left([a]_{d}\right)=(0,0, \ldots, 0)$ than $[a]_{d}=[0]_{d}$. Suppose $h\left([a]_{d}\right)=0$, ie. $[a]_{d_{i}}=[0]_{d i}$ for all i, i.e. d_{i} divides a for all i. By the pairwise upcimenen of the $d_{i}, d=d_{1} d_{2} \cdots d_{u}$ divides a, so $[a]_{d}=[0]_{d}$.

Godel's β function. There is a wouputable function $\beta: \mathbb{N}^{2} \rightarrow \mathbb{N}$, sanely

$$
\beta(\omega, i):=\operatorname{Rem}(\operatorname{Left}(\omega), 1+(i+1) \operatorname{Right}(\omega))
$$

such that fer each $\vec{a} \in \mathbb{N}^{<\mathbb{N}}$ there is $\omega \in \mathbb{N}$ with $a_{i}=\beta(w, i)$ for all $i<\ln (\vec{a})$, where we write $\vec{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.
Proof. Let $m:=\max \left\{a_{0}, a_{1}, \ldots, a_{n}, n\right\}$ and pat $d_{i}:=1+(i+1) \cdot(m!)$ for each $i=0, \ldots,-1$. The di are pairwise coplime benne for any $i \leq j<n$, if a prime p divides b.th di and d_{j} than p divides $d_{j}-l_{i}=(j-i) \cdot(m!)$. Since $(j-i) \mid m$! if $j-i \neq 0$, we get the p divides m !, contrachctivg that $p\left|d_{i}=\right| f(\langle+t)|(m)|$. Hence, $i=j$.
B) the Chinese Remainder Thewren, there is $a<d \operatorname{rad} \operatorname{that} \operatorname{Ren}\left(a, d_{i}\right)=a_{i}$. Take $w:=\operatorname{Pair}(a, m!)$, so $\operatorname{Rem}(\operatorname{laft}(w), 1+(i+1) \operatorname{Righf}(w))=\operatorname{Rem}(a, 1+(i+1)(w!))=$ $\operatorname{Ran}\left(a, d_{i}\right)=a_{i}$.

